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I. Problem Definition

A. Background

Passive surveillance system performance in terms of

area coverage is ultimately limited by the noise environ-

ment in which it must operate. As the state of the art in

design has progressed, interest is no longer exclusively

in the omni-level of the noise field but now includes as

equally important the spatial, temporal and directional

characteristics of this field. Additionally, extreme concern

with the low frequency portion of the noise spectrum develops

as the need for enhanced classification capability increases.

The predominant component of the low frequency noise field

for most platforms is that of ship noise. Thus, as the

need for increased passive detection and classification

capability increases, one is forced to consider the low

frequency portion of the spectrum. In turn, this implies

the need to quantitatively specify the ambient noise envir-

onment.

Shipping distributions play a dominant role in the

calculation of low frequency ambient noise, si'.nce these

distributions affect both the level and the directional
•' characteristics of this noise field. The geographical

distribution of ships throughout the ocean basin gives

rise to the directionality, both horizontal and vertical. e-'

The variation of transmission loss with range and bearing

serves to accentuate or moderate this directional charac-

ter, and also determines the level of the shipping contri-

bution to ambient noise field at the receiver. Both the

ambient noise and the transmission loss are a function
of the depth of the receiver as substantiated by the

comparison of simulation models and experimental results.
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It is clear that all ships throughout an ocean basin

contribute to the ambient noise field. These individual

contributions will be more or less significant to the level
and directionality of the ambient noise field depending
upon the transmission loss from the ship to the receiver.

Near ships, i.e., those within 50 miles, may not be more
important than far ships, i.e., 200-500 miles, depending

on properties of the various convergence zones. Calcula-

tions clearly show that both the level and directional

characteristics of ambient noise are sensitive to the total

shipping distribution, including both near and far ships.

Historical shipping ficlds are available and serve
as a basis for planning and preliminary calculations in

the determination of real ti-ie shipping distributions.

Experience backed by empirical results demonstrates that

for model validation and ambient noise determination for
particular sites in a particular experiment an accurate

and timely observation of the true total shipping distri-

bution must be employed to obtain satisfactory results.

In the near term this distribution is obtainable only by

the use of real time aircraft surveillance.

This report addresses the problems and approaches
involved in reducing this observational data obtained from

aircraft surveillance in order to obtain a representative

shipping field for the time frame of the experiment.

B. Basic Problems

The raw data, of course, is highly dependent upon the
flight tracks and equipment performance. This implies

that if the region of interest is divided into rectangles

of some preset size (e.g., 10 x 10) then the coverage

afforded to these squares is somewhat uneven. Specifically,

S..~~~~~~........... " • -:'' .t..... ." . .,''•••,••• •". .. ... ; ,
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on a flight day a square may have multiple or only partial

coverage, i.e., a plane may cover the square more than once

(by covering it on two legs of the flight), or may only

cover a fraction of the square (if it is not directly under

the flight path). Different flight days will usually

utilize different tracks, resulting in differences in the
area being covered. Various portions of the overall survey

area have much higher priority than others (viz, a line
containing the source and receiver ships in an acoustic

experiment). Also, different planes will often be used.

The equipment on board such planes can vary greatly in

quality and reliability. The planes may even have differ-

ent tyes of equipment. And different radar operators will

account for more differences in data; a good operator can

'tweek' his set with fine adjustments to a high level of

quality; another operator might not be able to do any 'fine

tuning'.

Thus, the raw data gathered is not completely uniform;

indeed in some cases quality variations may be extreme.

Also there are historical shipping fields of various quality

which may be utilized. From such an accumulation of data

one wishes to construct, using an algorithm, a representa-r tive shipping field.

C. Techniques

There are innumerable possible ways of answering the

question "How should one estimate density?" In light of

the types of data available, the problems mentioned above,

and the constraints on the analysis (viz, a limited number

of surveillance flights and a rapid response in terms of

the overall shipping field), there are two algorithms which

II



appear most suitable. The choice of which of these algo-

rithms to use in analyzing a specific set of data depends

on the attributes of that data set (e.g., the quality and

quantity of the data, the conditions under which various

subsets of it were taken). These algorithms are based on

both theory and practice, and have been utilized in the

analysis of surveillance data from exercises.

The first one is the weighted average algorithm,
which is described in Section II. If the data is very

limited, this algorithm should be used, which will provide

the (weighted) mean and variance of the shipping density

in each square. This algorithm is quite rapid on a pro-

grammable desk top electronic calculator. If more data
is available, or the data is of very uneven quality, then

the other algorithm should be utilized. This algorithm,

which can uti.lize incomplete data, is described in Section

III. The theory underlying this algorithm is presented in

Section IV.

Like any mathematical or statistical tool, it can be

misapplied. If data is uniformly poor or worthless, no
algorithm will convert it into an accurate prediction
(the computer maxim of GIGO is completely applicable).

If data is very scanty (e.g., one day of observation), there

is no point in utilizing such an algorithm; there is little

or nothing to cross-correlate. In such a situation the

former algorithm should be utilized.

Typical results of the weighted average algorithm

are given in Section II. An example of the other algorithm

as applied to actual data is given in Section V.

wwg 'ii.___



The description of the weighted average algorithm

(Section II I is taken from PSI report TR-004002, while

the description of the partial data set algorithm comes

SI

from TR-004012.7
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H.• II. Weighted Average Algorithm

It is necessary to assure that the shipping field density
during the course of the exercise is stationary, i.e., not

time dependenC. It is then of interest to consider the average

density. A moments reflection will indicate that the arithmetic

mean

1n
h r d eA = -E d. (1)n 1i1

Shas certain deficiencies. For example, suppose on day 1 an

area was covered at three different times by different aircraft,

but on day 2 only one aircraft was in the area, and it only

covered half the square. The above formula would attack equal

significance to the computed values of the ship density on those

two days, whereas the estimate of the density on day 1 is (sta-

tistically) superior to that of day 2. For this reason a

weighted average will be used.

U Before plunging into the relevant equations, several quanti-

ties will be defined. Fix an area of the ocean (for the com-

putations 50 x 50 squares will be used), and let ni be the

number of ships observed on the ith day (i = 1,2,...,n), and

let pi be the proportion of the area covered on the ith day.

If Pi 3 0 then an estimate of the density of ships in the area

on the ith day is given by

di = n/p (2)
For later convenience, define

s i= P (3a)

s2 (3b)
i=l

AI



The weighted average has the form

d d
Ewidid - k(4 )

where wi and k are constants (the constant k is introduced so

that the w. may have simpler form). In order to attach the same

importance to each square mile which was covered, the weight must

be proportional to the amount of area covered, i.e., wi p pi"

The constant k is chosen such that d is an unbiased estimator.

That is, if d. are independent samples of a random variable
1

(called "density") having mean P, then k is chosen such that the

expected value of d is v, i.e.,

E[d] = (5)

which implies k s. But w di pid = n. so

d = (Eni)/s (6)

For similar reasons, a weighted estimator of variance is

desirable. This estimator has the form

' =2 EiW (di - d) 2
k

Letting w. = pi gives a system consistent with equation (6). This

*system favors the larger area coverage, but does not place inordi-

nate emphasis on the days with maximum coverage. Choosing k such

that a is an unbiased estimator gives
n

^2 s 2/'2 2 d2•2 2 ( -'2 :li(8)

S 
2

2~ s

where n2 - o when n.i p.i -- o. The (weighted) average density,

by 50 x 50 square, is given in Figure 1, and the variance is

given in Figure 2, for data gathered recently in the Pacific.
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III. Algorithm for Estimating the Monthly Shipping Density

Averages from a Partial Data Set

A. Introduction

The shippinc density D(x, y, t) at a given ocean locality

is a stochastic f.unction of time. Conceptually, it is defined

as a number of ships per "unit" area. In practice, the unit
area is taken to be a 1/20 x 1/20 square in the ocean, thus
D(x, v, t) for any point in the grid is simply the number of

ships in the grid. Thus instead of a continuous varying point

(x, y) in the ocean, we have

D(x, y, t) = D(Si t))

where (x, y) C S.
- "o 1

! 1and Si, i = 1,2,...,N is a partition

of the given ocean are.-i into 1/20 x 1/20 squares. Our problem

is to estimate the time averages

D " T1 - TOJ D(Si, t) dt (2)

0

In the present problem we take T1 - To one month

SNow D(Si, Q is observed for oniy a few points in time t:e

j = ... ,M. In fact, M < 4. Furthermore the set of S observed

at a given time t4 may or may not cover the entire ocean area. We

-hall assume- that there is at least one time-, ti, for example, when

the observation (by radar), covers the entire ocean area. The

observation of the ocean area at a given time t. may be
represented by an N x M matri.< C, i.e.,

C(i, j) [C(Si, t.)] i = 1, 2,...,N; j = I,...,M (3)

where C(Si, t.) = number of times square S. is observed.

- --- - -
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Of course C(i, j) > 0. And we stipulate that for j 1,

C(i, j) 1 1. Corresponding to C(i, j), we have the ship matrix

S, i.e.,

S(i, j) = number of ships reported to be in Si

at Lime t.
]

K Then the Density Matrix D is given by

D(i, j) = S(i, j)/ C(i, j) (4)

where only elements of D(i, j) for which C(i, j) 5 0 are defined.

Thus D is an incomplete matrix, The problem is then to estimate
the ve--tor D.

D = (D(l),...D(N)) from the matrices C and S.

B. Solution

The following approach is adopted.

Step 1: Complete the matrix D from the data C and S,

by method of least square.

A

Step 2: D(i) = --M-[ w.D(i, j)], (i)
j=l3

where " denotes "estimation of" and the w. s

are weights.
r •C. Details of Step I

Recall that the first column of D is complete, and for

simplicity, we assume that all other columns of D are incomplete;

we shall complete the other in:.omplete columns so as to maximize

the-correlation of the j-th cclumn of D

D. (D(i, j), i 1 1, 2,...,N) with the first

column, and with each other. Autd this is done by means of

weighted least square. More precisely, we maximize the follow-

ing function p.

~ ~ '~ ~ - - -



M M
p = kj p(DI, Dj) + Z k. p(Di, Dj) (2)Sj=2 i>2 '113

S~i/j

where p(Di' D.) is the proportionality factor between D. and D.

and k's are some sort of weighting factors. The "non-existent"

D(i, j) are variables to be estimated by maximizing p, i.e., by

setting

0 (3)ax

One equation for each missing D(i, j) (= x) and k. are some
weighting factors. However to simplify the calculation, we

tentatively set k.. = 0.* Then p is maximized by separately13
maximizing

pj p(D 1 , D (4)

i.e., by setting
Bpi

- = 0 (5)

one equation for each missing D(i, j) (= x) in D.

We further specify the form of p so that for a given miss-

ing D (i, j) (= x) , equation

Bp.
a = 0 is of the following form

ax [E C(i, 1) C(i, j) (D(i, 1) x-D(i, j)xI) ] (6)
icE.

where E. = the set of i c[l,2,...,NJ for which D(i, j) exist
J

and xI = D(i, 1), the element in the first column corresponding to• h
to the missing element in the 3--column

x = D(i, j).

*Prom the fact that many elements of D., D. are missing, we ex-
pect << ki, kj. Hence as a first apprxLimation, k = 0.



The complete form of p. is

2

F.om*E C(i, 1) C(i, j) D(il) x -D(i, x (7)

Frm(6) we deduce imnmediately*

2

E C(i, 1) C(i, j) D(i, j)

iCEj i~E~ (8)

Thus we see that a is the same for all x = D(i, j) in] j,

Thus we have simply

D(i, j) = a. D(i, 1) (9)

for all i e E.. Thus the missing D(i, j) can be estimated for

each j = 2,...,M and the monthly average computed by

M
D(i) = (F D(i, j))/M (10)

j =1

*This is the benefit of assuming k.. = 0, otherwise we have to

solve a simultaneous system of line'Ar equations or use an
iterative method.
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D. General Algorithm

Section C treated the special case where it was assumed

that the first column of the D matrix (which corresponded to

flight day 'one') was complete, and that all other columns were

incomplete. That is, it was assumed that one of the fligh: days
obtained, total coverage of the area and all other days only had
partial coverage. This is the simplest case, and was used to

illustrate the technique involved. In practice, of course, thesituation is much more complex. The number of complete area

coverage days may be much greater than one, or it may be zaro.

Also, the simplified case presented above assumed that all

days had equal weighting; this is rarely the case, for reasons

mentioned in section I-B. Thus appropriate weights must be

computed. As was done in section II, weights are determined by

the number of times each flight covered the specific squares

which it was surveying.

*11

J . .,
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IV. Theory of Estimating Ship Density Time Averages for

Incomplete Data

A. Introduction

The previous section presented an algorithm for estimating

ship density time averages from incomplete data. It was a

weighted least square method, minimizing a certain weighted sum

of squares. It turns out that the computation of that algorithm

is quite simple. In this paper we tackle the same problem from

a theoretical point of view. This naturally leads to a maximal

likelihood estimate for the density. It is shown that the maxi-

mal likelihood estimate will tend to make each component of the

cited sum of squares small, thus vindicating our algorithm.

The exact numerical solution of the maximal likelihood esti-

mate is much more complicated than the algorithm of Section III.

The algorithnmic solution is utilized as an approximation to the

maximal likelihood estimate.

The notation of this section is consistent with that used

in the description of the algorithm. In particular the meaning

of C, D, 5, 5j, S, Si, M, N,... are the same.

B. Theory, Assumptions and Notation

Recall that U S. is a partition of the ocean area of

i=l

interest. Observations are made at times tit j=l, ..,N. The

ship matrix S looks schemtically as follows

S1 S 7-1

S• Fig. 3 Schematict2  ' _,

E2  View of S

where E is the set of S's for which D(ij) exists.

I I:Q



We shall assume that for each square Si, there is a proba-

bility p(Si) = pi such that given a ship in the area, it will

be found to be in the square S. We assume that pi is constant

in the period from tI to tM (i.e., we assume that the relative

densities throughout the area do not change in the time period

under consideration.) By looking at the generating function

K
g(xI,...IxNJK) = (Pl(l +...+ PNXn) (1)

where

iT~=i= = 1(2)

It is seen that the probability of there being k. ships in
Si, i=l,..., N isI •I

SN k.Pr(kl,...,kN) = C(K; k,...,kN (P (3)
i=l 1

where

and C is the multinomial coefficient.

Let there be a total of K ships in the area and assume that

only a subset E of the squares in area S have been observed thatr , day (either full or partial coverage of the square). For con-

venience let the subset E of

S = {SI, S2, ,N

be given by

E={S. :i c Q}

where Q is a subset of {1,2,...,N}.

Define

PE =I[- Pi
iL:Q1
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E 1e'Q i

PC = 1 P

KC = K KE

Then the probability that there are k. -,hips in square S. for all
squares S. in the subset E (gives a tctal of K ships) is

Pr[D(Si) ki ViEQIK]

KE K (KE)

K E)E E() C I-k-IPQ
k i •- i

J[ (pi/PE
i EQ

' j~ k"'! (PC) / (pi) i'(4)

C iE:Q Ii

Denote this function by Pr(QIK), which is a much simpler, though
nonrigorous (and somewhat sloppy) notation.

i • '•C. Maximal Likelihood Estimates

"-"•i .. Thee Likelihood function L foi_ the M t~ime observations in

the overall area S is given by

M J.
L(S) = logi-E Pr (Q.K

j=l

where Q'i is the subset of indicies corresponding to the square
observed on the j-th day, and K. is the total number of ships in

area S on the j-th day.

That is, if E. denotes the subset of squares S. of the set
S wSwhich were covered on the j-th day of observation, then



Ej {Si iEQj}

TVii unknowns in equation (1) are the total number of ships

in the area for each day of coverz ge (note this is not equal

to the number of ships observed on those days), and the base

probabilities for each square.

These unknowns are determined as those values which maxi-

mize L(S), i.e., the solution of the following system

a N
[L(S) + X(l - E pi] = 0

for j E%

(2)

a N
- --[L(S) + X(i -(. pi)] = 0

i=l
for l<_i.<_N

where, of course, we have the constraining relationship

N
7. p. 1i=l

The set J consists of indicies of all days which did not cover

(fuhll or partially) every square, i.e.

J = {j:l<j<_M and E. • S}.

Or, more explicitly, the system of equations is:

S[log K - log K.. + K. log (l-qj)] = 08K. [log j"U Jfor jcJ



N
-[ 7 • D(i,j) log pi]"Pi i=l jE¢

+1 E j . log qj + E K. log (1-q_.)

+ p--- D(i,j)log pi] - = 0 (3)
S.. jeJ iEQj

for l!i<_<N

where we define (using notation from section III)

N
K. D(j) = Z D(i,j)3 i=1

K. Dj DE ()= m

jK. = K .- K.

qj = i

• iEQj

That is, K. is the partial sum of ships, Kj its difference from

the total sum Ki, 0 is the complement of J and qj is the partial
sum of probabilities. The quantity X 4,s the Lagrangian multi-

plier arising from the restraining equation.

Without loss of generality we may assume that the set J has

exactly one element, and this element will be taken to be '1'.

For it is assumed that on some day all squares will be covered

(fully or partially); if this is not so, historical data can be

utilized to establish a 'base' field, or first overall estimate.

(Incorporation of historical data bases with observational data



in these algorithms can be easily accomplished. However under

such conditions weights should definitely be used to reflect the

relative confidence in the differing data types - see section I).

If J consists of more than one element, then those days may be

combined (using appropriate weighting, as is done in section II),

into a single 'day' of data, which is then utilized. In practice,

of course, the algorithm given in section III performs properly

regardless of the size of this artificial set 'J'. Therefore,

there is no loss of generality in assuming that the set J con-

sists of the single index 'l', which is implicitly used in the

following subsections.

We shall solve the problem first for the case M = 2, then

for the case M = 3. These two specific cases will suffice for

illustrative purposes; in practice the least squares algorithm

is always used, which simplifies computation immensely.

D. The Case M = 2

To simplify notation we write q, K, K and E for q 2 ' K2 , K2

and E2 respectively. The requirement is to solve the

following simultaneous system:

[ Ki-log(K-K)! + (K-K) log(l-q)] - 0

D(i, 1)/p. + K-K + D(i,2)]= U
q l-q Pi E

for li<N

N (4)
ZP. = 1(
i=l 1

where • is the characteristic function of the set E, i.e.

(i) 
if iCE

(0 if i4E

The first equation will be replaced by an approximation by using

the Stirling approximation for K!

~, , , ' ,,



' K7i"

f2 "K! K exp(-K +w (K)), (5)

where

1K < w(K) < 12K12K+6

Hence
SK! 1 K (2K - K) 1 K

(log (-K)•! T-2 .2 2 K(K-K)

K
+_log __

Thus K is a root of the system:

1 K(2K-K) 1 K + log(K-q) K
12 2 2 2 K(K-K) '-K

D(i,1) = Xpi for i4Q

DK-K) + D(i,2)

(i,) - ( + ]PiS l-q Pi

for iCQ (6)

The system (6) can be solved iteratively as follows.

Adding the last equations in the system for i=l,..,N we get

"D(l) + DE (2) + K l-q q =X (7)

As an initial approximation to q, we take

I
(q) = DE (1)/D(l) (8)

Substituting this value of q into the first equation of (6) we
1

solve for K and denote the estimate by (K). Substituting this
1

value of K into eq. (7), we get (X), hence we get

. I',
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"(pi) D(i,l)/(X) for itQ

and

(p.) [D(i,l) + D(i,2)1/((X) -(F) (9)

1 ~1-
where 1(K)

(F) = ( (q)
1- (q)

Then 2 1(q) = (pi)

And the iteration continues. Under suitable conditions the

iteration will converge, giving the final estimates of

q = Lim (q) n

= Lim (,)n
n+W

Pi Lim (pi)n
(10)

Of course, as with most iterative procedures designed to

solve maximum likelihood estimation problems, it is possible for

the data to be such that the estimates either diverge, oscillate,

"or converge to a false position which is not the maximum.

Since we are only interested in the theoretical properties
of the problem, and do not intend to use this procedure for

acLual computation in a production environment, it is of no value

to digress into techniques of numerical analysis to handle such

caseJ, or to examine the behavior of the system when the maximum

lies on the boundary of the domain, rather than the interior case

(which is the general case). It suffices to say that the M.L.E.

function is continuous on a compact subset of Euclidean space,

therefore a maximum exists.

E. The Relation of Maximal Likelihood Estimates to the

Least Square Method

Recall. that the least square estimates D(i,2) , i{Q

~ -L



are obtained by minimizing each of th. following expressions
I

p£= Z C(i,l) C(i,2) [D(Z,l)D(i,2) - D(9,2)D(i,l)]2iI €IIieQ

where the C's and D's are elements of the matrices used in

V• section YII.

To digress a minute, consider the random variable

K
Z = . (2)

?,• j = l

where the C's are independent Bernoulli random variables with

parameter (expectation) p. and K is an integer valued random

variable. Then this is a stochastic representation of the number

of ships in the Z-th square when t he variable K denote6 the
total number of ships in the area. Now the minimizing value of
D(Z,2) for £4Q (see equation 1 above) is the estimator of the

expected value of Z, which is

E[Z] = pZE[K1 (3)

[In the situation where there is partial coverage of

squares (or multiple coverage of part of a square by different

flights), then the above heuristic model must be expanded, since
F ,' now the estimator K need not be an integer. In such a case the

modification is

S~k

z= E +k

where k is the integral rortion of K and ri is a discrete random

variable related to the fractional portion of the random vari-

able K. The expected value relation (3) still holds however.]

.7 Z
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Now the maximal likelihood estimates of K and the pI's

are such as to make Kp, approximate D(Z,2)

and D(l)p, approximate D(k,l), i.e.,

D(i,2) • Kpi

for iEQ
D(i,l)-O D(1)Pi

D(Z,l) ; D(l)p, for 9,0
D (Z,2) = Kp£ 4

Thus system (4) will make the term

[D(£,l)D(i,2) - D(Z,2)D(i,l)]
2

small for all ieQ and £4Q, and hence it will make p small.

This shows that the least square estimates of D(£,2), £ZQ

must approximate the maximal likelihood estimates. However the

numerical calculation of D(Z,2) by weighted least squares is
much shorter than that of maximal likelihood estimates.

F. The Case N = 3

We shall illustrate the calculation of maximal likelihood

estimates for K2 ,... ,KMpl,..pN for the case M = 3. The calcula-

tions are much more complicated than the case M = 2. Thus we

appreciate even more the quick method of least squares.

Corresponding to eq. (4) of subsection D, we have

K (2K.-K.) K. K.
3 4 log I-- + log(l-qj) 0

12K2 (Kj-K)2 2Kj(Kj-Kj) l K.
12K(K-K. j

j = 2,3 (i)

41-*



•iI-i
For iQ 2U Q 3  we have

D(i,l) = Xpi.
11

For i E Q2 - Q3V we have

K 2  K 2 -K 2
D(i,l) + D(i,2) + q -q 2  Pi Pi (2)

For i Q3 -Q 2 wehave i

D(i,l) + D(i,3) + -i =p Ai (3) 1
q 3  q 3  1

For i e Q2 n Q3' we have

D(i,l) + D(i,2) + D(i,3) + [F 2 + F 3 ] Pi = Pi (4)

K 2 K 2 _- _ _

where F 2=- ~ 2 2whr 2 q q2 1 - q 2

and a si.milar expression for F3 .

If we add equations (1) for i=l,...,N, we get

S= D(1) + D (2) + D (3) 4 (F)q + (F )q

2~ 33

We initialize q2 , q 3 by setting

(qj), = DE (1)/D(l)

Then from equation (1) we solve for K2 , K3 to get (K2 ) 1 and (K 3 ) 1 .

Then equations (2), (3), (4) will get us (pi)l from which (qj) 2

are computed and the process repeated until sufficient accuracy

is achieved.

* -



V. Analysis of a Specific Case

* This partial data set algorithm was utilized in the

analysis of data obtained in the Alboran basin. The flight

tracks varied widely, resulting in partial coverage for

almost all flight days; in some instances, less than a

quarter of the squares were covered (although this was

very unusual).

There were three types of flights that gathered data

on the Alboran during the exercise:

(a) Aircraft Surveillance flights performed

during August.
(b) Aircraft Surveillance flights performed

during November.

(c) Other flights which performed shipping

surveillance. These flights had

as their primary tasks other duties
which allowed shipping data to be

gathered at the same time. These

covered a period of several months.

There were a few flights in groups (a) and (b) and several

in group (c). Quality of the data varied widely; most

flights in groups (a) and (b) obtained excellent data,
while several flights in group (c) had radar difficulties.

The time period of interest was November; thus, August

shipping densities were scaled to reflect the lighter

traffic in that region during November. Also they were

weighted much lighter than the November flights. The

representative density obtained for November is shown in

figure 3. The confidence in the results depends upon the

underlying data. In the Alboran Sea itself, much data

was available and the results are felt to be very trust-
worthy. In the extreme eastern region of the area (squares

12-14, 22-24, 33-35, 46-47) little data was available

7' N..



(only two flights gathered data on these squares); thus,

historical data for these squares was entered as well as

the observed data. Confidence for these end squares

naturally is much lower than for the important areas.

A fishing fleet was observed on one flight of group

(c), which naturally produced a very high density for that

square on one day. Since the algorithm maximized overall

correlation, the resultant shipping field did not show

this abnormality in the square.

It is interesting to note that densities were com-
puted both with and without the final data set (taken 2

December), and they agreed within 3%, indicating that the

additional data was (statistically) very similar to the

other data sets.

This algorithm has provided realistic shipping den-
sity estimates based on actual exercise data of vastly

varying quality. It has shown relative insensitivity to

singularly high data points which are inconsistent with

the remainder of the data. Therefore, we feel that this

algorithm will give an accurate and robust estimate of

the shipping field under typical conditions encountered

in actual exercises.

I
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VI. Theoretical Sensitivity Analysis

In this section we consider the sensitivity of the weighted I
average algorithm. To do this a theoretical stochastic model

will be utilized, and the statistics of the estimator (i.e., the
computed density) will be examined.

If an area of open ocean is small (in comparison to the

world), then the number of ships in that area at a fixed time

can be modelled by a Poisson distribution whose parameter X is

the expected number of ships in the area. As before, this small

area is taken to be a square of suitable dimensions. The air-

craft surveillance days are sufficiently separated that a ship I
in the square on one day will have left the square by the next

surveillance day, thus we may assume that the ship counts on

different days are independent (the basic premise of statistical

sampling).

Therefore consider a square which contains (on the average)

X ships, and let these be n surveillance flights. Let pi be the

coverage of the i-th flight. Let Xi be a sequence of independent

random variables having Poisson distributions with parameters

Xpi respectively. Then the weighted average (section II, equation

6) is represented by the random variable

D = FX./s(1

where s = Epi

If Z is a random variable having a Poisson distribution

with parameter Xs, then D is a law equivalent to Z/s, i.e., they
H . have the same distribution

i D Z/s (2)

Since we are only interested in the distribution, the cumbersome

term 'law equivalent' will be replaced by the common 'equals'.

i! '. .
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The random variable Z is Poisson, hence

E (D) = X (3)

Var(D) = X/s

so that as s tends to infinity, D tends to the constant X almost

surely,

Lim D = (4)

Consider the random variable

Y = -s (D -

where characteristic function is

E(eiYt)=exp{Xs(eit/ s

Now

Lim 0y(t) = exp - Xt /2

uniformly (in t) on compact sets, hence the random variable Y

converges In la.W to a normally distributed random variable with

mean 0 and variance A.

Therefore for large values of s, the distribution of D may
be approximated by a norr.mal distribution with mean X and vari-

ance XI/s (compare with equation 3).

To evaluate the algorithm, a natural question to ask is:
Given that the density is X, where do the .025 and .975 points
on the distribution of D lie? That is, find the largest dL and

the smallest dU such that

[4 Pr(D < d .025 (5)

Pr(D > du) U .975

I : - '
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Then we have

Pr(D c [dL, du]) > .95

i.e., 95% of the time the algorithm would give a value in this

interval For large values of s we may use the normal approxima-

tion to obtain the value

dL = X - 1.96/•-s

I it ~du X - 1. 9 6 A

For small values of s these limits should be computed directly

from the Poisson distribution. If we only consider the relative

bounds (i.e., by dividing by the mean), then we can express the
equations in terms of the single parameter 8 where

viz., 6L = dL/X = 1 - 1.96//-(6

6U = d u/X = 1 + 1.96/V-5

Figure 4 graphs these two normally approximated bounds, as well

as giving the actual bounds from the Poisson distributed variable

Z. Note that the Poisson (relative) bound, being an integral

multiple of liB, does not converge monotonically as the normal

bound does, but is discontinuous.

Now consider a problem which is quite different yet often

confused with the previous one. Specifically, given an estimate

X of the density in a square (with a fixed coverage s), construct

a confidence interval for the actual density X. That is, we

wish to find the greatest lower bound XL such that if this (or

any smaller value) is the true density, then the probability that
A

the estimated density is X or greater is less than a prespecified

amount (e.g., .025). A similar statement holds for an upper

CI -
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bound X This can be expressed as the largest XL and the smallest
U,.

X U such that

Pr(D X A A • <L) < .025

(7)

Pr(D < X X > XU) < .025

A

Note that X and X are functions of both X and s. Following the
L U

previous analysis we introduce new parameters, viz.,

L L s

au A Us

=Xs (8)

Once again it turns out that there is only one essential parameter,

for 8 L and aUj may be expressed solely in terms of 8. If we recall

the curves of Figure 4, where the abscissa was the parameter 1,

then the values of 0L and 0U (for a given 0) may be conceived

graphically as the intersections with a rectangular hyperbola of

parameter B, as illustrated in Figure 5.

'• y = / x

Sy =6ulx)

Figure 5

Geometrical Relationship of 8Land 8uponV •____....._-- _ _-- I__A



Analytically, of course, is the solution of the equation I
AL

VOL= 6U(L), £ (0, c)

ii I
and 8U satisfies the equation

UA

/U = 6LOU), £U C (0, W) I
Solving these equations in the asymptotic case (i.e., using the

normal distribution rather than the Poisson) yields j
L= + .960- .9812

u= + .9604 + .9812 (9)

where, of course, all square roots are positive. Graphs of these I
functions are presented in Figure 6. Note that SL and U are

the two sections of the parabola

(a 8)2 3.84168

From these graphs one may immediately obtain a confidence interval
'; ~for the true density X, using the equations of system (8).

.r3
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